equationandfigure.tex 3.2 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. \section{Equations and Figure}
  2. \frame{\sectionpage}
  3. \begin{frame}{Ordinary Differential Equations}
  4. \uncover<+->{\begin{equation*}
  5. \dv{x} y(x) + \frac{1}{CR} y(x) = 0
  6. \end{equation*}}
  7. \uncover<+->{\begin{equation}
  8. \dv[2]{x} y(x) + \gamma \dv{x} y(x) + \omega_0^2 y(x) = f(x)
  9. \end{equation}}
  10. \end{frame}
  11. \begin{frame}{}
  12. \uncover<+>{\begin{equation*}
  13. \dv[2]{x} y(x) + \gamma \dv{x} y(x) + \omega_0^2 y(x) = f(x)
  14. \end{equation*}}
  15. \uncover<+>{\[ \Downarrow \]
  16. \begin{equation*}
  17. \colch{\dv[2]{x} + \gamma \dv{x} + \omega_0^2} y(x) = f(x)
  18. \end{equation*}}
  19. \uncover<+>{\[ \Downarrow \]
  20. \begin{equation*}
  21. y(x) = \frac{f(x)}{\dv[2]{x} + \gamma \dv{x} + \omega_0^2}
  22. \end{equation*}}
  23. \end{frame}
  24. \begin{frame}{Imagem}
  25. \centering
  26. \includegraphics[width = 0.8\textwidth]{images/coke.jpg}\\
  27. \footnotesize \textcolor{yellow}{Figure:} Some words about the figure here
  28. \end{frame}
  29. \begin{frame}{See how is cool the fourier serie}
  30. \uncover<+>{\begin{equation*}
  31. \mathcal{F}[f](\xi) = \hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i x \xi} \dd{x}
  32. \end{equation*}}
  33. \uncover<+>{\begin{equation*}
  34. \mathcal{F}^{-1}[\hat{f}](x) = f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\xi) e^{i x \xi} \dd{\xi}
  35. \end{equation*}}
  36. \end{frame}
  37. \begin{frame}{Quality Control}
  38. \uncover<+>{\begin{equation*}
  39. \widehat{(f + \alpha g)}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \prnt{f(x) + \alpha g(x)} e^{-i x \xi} \dd{x}
  40. \end{equation*}}
  41. \uncover<+>{\[ \Downarrow \]
  42. \begin{equation*}
  43. \widehat{(f + \alpha g)}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i x \xi} \dd{x} + \frac{\alpha}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} g(x) e^{-i x \xi} \dd{x}
  44. \end{equation*}}
  45. \uncover<+>{\[ \Downarrow \]
  46. \begin{equation*}
  47. \widehat{(f + \alpha g)}(\xi) = \hat{f}(\xi) + \alpha \hat{g}(\xi)
  48. \end{equation*}}
  49. \end{frame}
  50. \begin{frame}{Quality Control}
  51. \uncover<+>{\begin{equation*}
  52. \widehat{f'}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f'(x) e^{-i x \xi} \dd{x}
  53. \end{equation*}}
  54. \uncover<+>{\[ \Downarrow \]
  55. \begin{equation*}
  56. \widehat{f'}(\xi) = \eval{\frac{f(x) e^{-ix\xi}}{\sqrt{2\pi}}}^{+\infty}_{-\infty} + i\xi \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-i x \xi} \dd{x}
  57. \end{equation*}}
  58. \uncover<+>{\[ \Downarrow \]
  59. \begin{equation*}
  60. \widehat{f'}(\xi) = i\xi \widehat{f}(\xi)
  61. \end{equation*}}
  62. \end{frame}
  63. \begin{frame}{Quality Control}
  64. \centering
  65. \textcolor{green2}{\huge{The inverse does work}}
  66. \normalsize{for appropriate functions}
  67. \tiny{and, sometimes, the Fourier Transform of a function is not in the same set as the original function, but let's forget about this since we do not know a decent theory of integration}
  68. \end{frame}