123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038 |
- ; Keypress Equates
- ;======================================================================
- ; Keyboard key names
- ;
- ;
- kRight EQU 001h
- kLeft EQU 002h
- kUp EQU 003h
- kDown EQU 004h
- kEnter EQU 005h
- kAlphaEnter EQU 006h
- kAlphaUp EQU 007h
- kAlphaDown EQU 008h
- kClear EQU 009h
- kDel EQU 00Ah
- kIns EQU 00Bh
- kRecall EQU 00Ch
- kLastEnt EQU 00Dh
- kBOL EQU 00Eh
- kEOL EQU 00Fh
- ;
- kSelAll EQU 010h
- kUnselAll EQU 011h
- kLtoTI82 EQU 012h
- kBackup EQU 013h
- kRecieve EQU 014h
- kLnkQuit EQU 015h
- kTrans EQU 016h
- kRename EQU 017h
- kOverw EQU 018h
- kOmit EQU 019h
- kCont EQU 01Ah
- kSendID EQU 01Bh
- kSendSW EQU 01Ch
- kYes EQU 01Dh
- kNoWay EQU 01Eh
- kvSendType EQU 01Fh
- kOverWAll EQU 020h
- ;
- kNo EQU 025h
- kKReset EQU 026h
- kApp EQU 027h
- ;
- kDoug EQU 028h
- kListflag EQU 029h
- menuStart EQU 02Bh
- ;
- kAreYouSure EQU 02Bh
- kAppsMenu EQU 02Ch
- kPrgm EQU 02Dh
- kZoom EQU 02Eh
- kDraw EQU 02Fh
- kSPlot EQU 030h
- kStat EQU 031h
- kMath EQU 032h
- kTest EQU 033h
- kChar EQU 034h
- kVars EQU 035h
- kMem EQU 036h
- kMatrix EQU 037h
- kDist EQU 038h
- kAngle EQU 039h
- kList EQU 03Ah
- kCalc EQU 03Bh
- kFin EQU 03Ch
- ;
- menuEnd EQU kFin
- ;
- kCatalog EQU 03Eh
- kInputDone EQU 03Fh
- kOff EQU kInputDone
- ;
- kQuit EQU 040h
- appStart EQU kQuit
- ;
- kLinkIO EQU 041h
- kMatrixEd EQU 042h
- kStatEd EQU 043h
- kGraph EQU 044h
- kMode EQU 045h
- kPrgmEd EQU 046h ; PROGRAM EDIT
- kPrgmCr EQU 047h ; PROGRAM CREATE
- kWindow EQU 048h ; RANGE EDITOR
- kYequ EQU 049h ; EQUATION EDITOR
- kTable EQU 04Ah ; TABLE EDITOR
- kTblSet EQU 04Bh ; TABLE SET
- kChkRAM EQU 04Ch ; CHECK RAM
- kDelMem EQU 04Dh ; DELETE MEM
- kResetMem EQU 04Eh ; RESET MEM
- kResetDef EQU 04Fh ; RESET DEFAULT
- kPrgmInput EQU 050h ; PROGRAM INPUT
- kZFactEd EQU 051h ; ZOOM FACTOR EDITOR
- kError EQU 052h ; ERROR
- kSolveTVM EQU 053h ; TVM SOLVER
- kSolveRoot EQU 054h ; SOLVE EDITOR
- kStatP EQU 055h ; stat plot
- kInfStat EQU 056h ; Inferential Statistic
- kFormat EQU 057h ; FORMAT
- kExtApps EQU 058h ; External Applications. NEW
- kNewApps EQU 059h ; New Apps for Cerberus.
- ;
- append EQU kNewApps
- ;
- echoStart1 EQU 05Ah
- ;
- kTrace EQU 05Ah
- kZFit EQU 05Bh
- kZIn EQU 05Ch
- kZOut EQU 05Dh
- kZPrev EQU 05Eh
- kBox EQU 05Fh
- kDecml EQU 060h
- kSetZm EQU 061h
- kSquar EQU 062h
- kStd EQU 063h
- kTrig EQU 064h
- kUsrZm EQU 065h
- kZSto EQU 066h
- kZInt EQU 067h
- kZStat EQU 068h
- ;
- echoStart2 EQU 069h
- ;
- kSelect EQU 069h
- kCircl EQU 06Ah
- kClDrw EQU 06Bh
- kLine EQU 06Ch
- kPen EQU 06Dh
- kPtChg EQU 06Eh
- kPtOff EQU 06Fh
- kPtOn EQU 070h
- kVert EQU 071h
- kHoriz EQU 072h
- kText EQU 073h
- kTanLn EQU 074h
- ;
- kEval EQU 075h
- kInters EQU 076h
- kDYDX EQU 077h
- kFnIntg EQU 078h
- kRootG EQU 079h
- kDYDT EQU 07Ah
- kDXDT EQU 07Bh
- kDRDo EQU 07Ch
- KGFMin EQU 07Dh
- KGFMax EQU 07Eh
- ;
- ;
- EchoStart EQU 07Fh
- ;
- kListName EQU 07Fh
- kAdd EQU 080h
- kSub EQU 081h
- kMul EQU 082h
- kDiv EQU 083h
- kExpon EQU 084h
- kLParen EQU 085h
- kRParen EQU 086h
- kLBrack EQU 087h
- kRBrack EQU 088h
- kShade EQU 089h
- kStore EQU 08Ah
- kComma EQU 08Bh
- kChs EQU 08Ch
- kDecPnt EQU 08Dh
- k0 EQU 08Eh
- k1 EQU 08Fh
- k2 EQU 090h
- k3 EQU 091h
- k4 EQU 092h
- k5 EQU 093h
- k6 EQU 094h
- k7 EQU 095h
- k8 EQU 096h
- k9 EQU 097h
- kEE EQU 098h
- kSpace EQU 099h
- kCapA EQU 09Ah
- kCapB EQU 09Bh
- kCapC EQU 09Ch
- kCapD EQU 09Dh
- kCapE EQU 09Eh
- kCapF EQU 09Fh
- kCapG EQU 0A0h
- kCapH EQU 0A1h
- kCapI EQU 0A2h
- kCapJ EQU 0A3h
- kCapK EQU 0A4h
- kCapL EQU 0A5h
- kCapM EQU 0A6h
- kCapN EQU 0A7h
- kCapO EQU 0A8h
- kCapP EQU 0A9h
- kCapQ EQU 0AAh
- kCapR EQU 0ABh
- kCapS EQU 0ACh
- kCapT EQU 0ADh
- kCapU EQU 0AEh
- kCapV EQU 0AFh
- kCapW EQU 0B0h
- kCapX EQU 0B1h
- kCapY EQU 0B2h
- kCapZ EQU 0B3h
- kVarx EQU 0B4h
- kPi EQU 0B5h
- kInv EQU 0B6h
- kSin EQU 0B7h
- kASin EQU 0B8h
- kCos EQU 0B9h
- kACos EQU 0BAh
- kTan EQU 0BBh
- kATan EQU 0BCh
- kSquare EQU 0BDh
- kSqrt EQU 0BEh
- kLn EQU 0BFh
- kExp EQU 0C0h
- kLog EQU 0C1h
- kALog EQU 0C2h
- kToABC EQU 0C3h
- ;
- kClrTbl EQU 0C4h
- ;
- kAns EQU 0C5h
- kColon EQU 0C6h
- ;
- kNDeriv EQU 0C7h
- kFnInt EQU 0C8h
- kRoot EQU 0C9h
- ;
- kQuest EQU 0CAh
- kQuote EQU 0CBh
- kTheta EQU 0CCh
- kIf EQU 0CDh
- kThen EQU 0CEh
- kElse EQU 0CFh
- kFor EQU 0D0h
- kWhile EQU 0D1h
- kRepeat EQU 0D2h
- kEnd EQU 0D3h
- kPause EQU 0D4h
- kLbl EQU 0D5h
- kGoto EQU 0D6h
- kISG EQU 0D7h
- kDSL EQU 0D8h
- kMenu EQU 0D9h
- kExec EQU 0DAh
- kReturn EQU 0DBh
- kStop EQU 0DCh
- kInput EQU 0DDh
- kPrompt EQU 0DEh
- kDisp EQU 0DFh
- kDispG EQU 0E0h
- kDispT EQU 0E1h
- kOutput EQU 0E2h
- kGetKey EQU 0E3h
- kClrHome EQU 0E4h
- kPrtScr EQU 0E5h
- kSinH EQU 0E6h
- kCosH EQU 0E7h
- kTanH EQU 0E8h
- kASinH EQU 0E9h
- kACosH EQU 0EAh
- kATanH EQU 0EBh
- kLBrace EQU 0ECh
- kRBrace EQU 0EDh
- kI EQU 0EEh
- kCONSTeA EQU 0EFh
- kPlot3 EQU 0F0h
- kFMin EQU 0F1h
- kFMax EQU 0F2h
- kL1A EQU 0F3h
- kL2A EQU 0F4h
- kL3A EQU 0F5h
- kL4A EQU 0F6h
- kL5A EQU 0F7h
- kL6A EQU 0F8h
- kunA EQU 0F9h
- kvnA EQU 0FAh
- kwnA EQU 0FBh
- ;
- ;======================================================================
- ; THIS KEY MEANS THAT IT IS A 2 BYTE KEYCODE
- ; THERE ARE 2 OF THESE KEYS; BE CAREFUL WITH USAGE
- ;======================================================================
- ;
- kExtendEcho2 EQU 0FCh
- ;
- ;======================================================================;
- ; THIS KEY MEANS THAT THE KEY PRESS IS ONE THAT ECHOS
- ; INTO A BUFFER, AND IT IS A 2 BYTE KEY CODE, GO LOOK AT
- ; (EXTECHO) FOR THE KEY VALUE
- ;======================================================================
- ;
- kExtendEcho EQU 0FEh
- ;
- kE1BT EQU 0
- kDrawInv EQU kE1BT
- kDrawF EQU kE1BT+1
- kPixelOn EQU kE1BT+2
- kPixelOff EQU kE1BT+3
- kPxlTest EQU kE1BT+4
- kRCGDB EQU kE1BT+5
- kRCPic EQU kE1BT+6
- kSTGDB EQU kE1BT+7
- kSTPic EQU kE1BT+8
- kAbs EQU kE1BT+9
- kTEqu EQU kE1BT+10 ; ==
- kTNoteQ EQU kE1BT+11 ; <>
- kTGT EQU kE1BT+12 ; >
- kTGTE EQU kE1BT+13 ; > =
- kTLT EQU kE1BT+14 ; <
- kTLTE EQU kE1BT+15 ; < =
- kAnd EQU kE1BT+16
- kOr EQU kE1BT+17
- kXor EQU kE1BT+18
- kNot EQU kE1BT+19
- kLR1 EQU kE1BT+20
- kXRoot EQU kE1BT+21
- kCube EQU kE1BT+22
- kCbRt EQU kE1BT+23 ; Cube ROOT
- kToDec EQU kE1BT+24
- ;
- kCubicR EQU kE1BT+25
- kQuartR EQU kE1BT+26
- ;
- kPlot1 EQU kE1BT+27
- kPlot2 EQU kE1BT+28
- ;
- kRound EQU kE1BT+29
- kIPart EQU kE1BT+30
- kFPart EQU kE1BT+31
- kInt EQU kE1BT+32
- kRand EQU kE1BT+33
- kNPR EQU kE1BT+34
- kNCR EQU kE1BT+35
- kXFactorial EQU kE1BT+36
- kRad EQU kE1BT+37
- kDegr EQU kE1BT+38 ; DEGREES CONV
- kAPost EQU kE1BT+39
- kToDMS EQU kE1BT+40
- kRToPo EQU kE1BT+41 ; R
- kRToPr EQU kE1BT+42
- kPToRx EQU kE1BT+43
- kPToRy EQU kE1BT+44
- kRowSwap EQU kE1BT+45
- kRowPlus EQU kE1BT+46
- kTimRow EQU kE1BT+47
- kTRowP EQU kE1BT+48
- kSortA EQU kE1BT+49
- kSortD EQU kE1BT+50
- kSeq EQU kE1BT+51
- kMin EQU kE1BT+52
- kMax EQU kE1BT+53
- kMean EQU kE1BT+54
- kMedian EQU kE1BT+55
- kSum EQU kE1BT+56
- kProd EQU kE1BT+57
- kDet EQU kE1BT+58
- kTransp EQU kE1BT+59
- kDim EQU kE1BT+60
- kFill EQU kE1BT+61
- kIdent EQU kE1BT+62
- kRandm EQU kE1BT+63
- kAug EQU kE1BT+64
- kOneVar EQU kE1BT+65
- kTwoVar EQU kE1BT+66
- kLR EQU kE1BT+67
- kLRExp EQU kE1BT+68
- kLRLn EQU kE1BT+69
- kLRPwr EQU kE1BT+70
- kMedMed EQU kE1BT+71
- kQuad EQU kE1BT+72
- kClrLst EQU kE1BT+73
- kHist EQU kE1BT+74
- kxyLine EQU kE1BT+75
- kScatter EQU kE1BT+76
- kmRad EQU kE1BT+77
- kmDeg EQU kE1BT+78
- kmNormF EQU kE1BT+79
- kmSci EQU kE1BT+80
- kmEng EQU kE1BT+81
- kmFloat EQU kE1BT+82
- kFix EQU kE1BT+83
- kSplitOn EQU kE1BT+84
- kFullScreen EQU kE1BT+85
- kStndrd EQU kE1BT+86
- kParam EQU kE1BT+87
- kPolar EQU kE1BT+88
- kSeqG EQU kE1BT+89
- kAFillOn EQU kE1BT+90
- kAFillOff EQU kE1BT+91
- kACalcOn EQU kE1BT+92
- kACalcOff EQU kE1BT+93
- kFNOn EQU kE1BT+94
- kFNOff EQU kE1BT+95
- kPlotsOn EQU kE1BT+96
- kPlotsOff EQU kE1BT+97
- kPixelChg EQU kE1BT+98
- kSendMBL EQU kE1BT+99
- kRecvMBL EQU kE1BT+100
- kBoxPlot EQU kE1BT+101
- kBoxIcon EQU kE1BT+102
- kCrossIcon EQU kE1BT+103
- kDotIcon EQU kE1BT+104
- kE2BT EQU kE1BT+105
- kSeqential EQU kE2BT
- kSimulG EQU kE2BT+1
- kPolarG EQU kE2BT+2
- kRectG EQU kE2BT+3
- kCoordOn EQU kE2BT+4
- kCoordOff EQU kE2BT+5
- kDrawLine EQU kE2BT+6
- kDrawDot EQU kE2BT+7
- kAxisOn EQU kE2BT+8
- kAxisOff EQU kE2BT+9
- kGridOn EQU kE2BT+10
- kGridOff EQU kE2BT+11
- kLblOn EQU kE2BT+12
- kLblOff EQU kE2BT+13
- kL1 EQU kE2BT+14
- kL2 EQU kE2BT+15
- kL3 EQU kE2BT+16
- kL4 EQU kE2BT+17
- kL5 EQU kE2BT+18
- kL6 EQU kE2BT+19
- ;
- ;======================================================================
- ; These keys are layed on top of existing keys to
- ; enable localization in the inferential stats editor
- ;======================================================================
- ;
- kinfData EQU kL1
- kinfStats EQU kL1+1
- kinfYes EQU kL1+2
- kinfNo EQU kL1+3
- kinfCalc EQU kL1+4
- kinfDraw EQU kL1+5
- kinfAlt1ne EQU kL1+6
- kinfAlt1lt EQU kL1+7
- kinfAlt1gt EQU kL1+8
- kinfAlt2ne EQU kL1+9
- kinfAlt2lt EQU kL1+10
- kinfAlt2gt EQU kL1+11
- kinfAlt3ne EQU kL1+12
- kinfAlt3lt EQU kL1+13
- kinfAlt3gt EQU kL1+14
- kinfAlt4ne EQU kL1+15
- kinfAlt4lt EQU kL1+16
- kinfAlt4gt EQU kL1+17
- kinfAlt5ne EQU kL1+18
- kinfAlt5lt EQU kL1+19
- kinfAlt5gt EQU kL1+20
- kinfAlt6ne EQU kL1+21
- kinfAlt6lt EQU kL1+22
- kinfAlt6gt EQU kL1+23
- ;
- ;
- kMatA EQU kE2BT+20
- kMatB EQU kE2BT+21
- kMatC EQU kE2BT+22
- kMatD EQU kE2BT+23
- kMatE EQU kE2BT+24
- kXmin EQU kE2BT+25
- kXmax EQU kE2BT+26
- kXscl EQU kE2BT+27
- kYmin EQU kE2BT+28
- kYmax EQU kE2BT+29
- kYscl EQU kE2BT+30
- kTmin EQU kE2BT+31
- kTmax EQU kE2BT+32
- kTStep EQU kE2BT+33
- kOmin EQU kE2BT+34
- kOmax EQU kE2BT+35
- kOStep EQU kE2BT+36
- ku0 EQU kE2BT+37
- kv0 EQU kE2BT+38
- knMin EQU kE2BT+39
- knMax EQU kE2BT+40
- kDeltaY EQU kE2BT+41
- kDeltaX EQU kE2BT+42
- kZXmin EQU kE2BT+43
- kZXmax EQU kE2BT+44
- kZXscl EQU kE2BT+45
- kZYmin EQU kE2BT+46
- kZYmax EQU kE2BT+47
- kZYscl EQU kE2BT+48
- kZTmin EQU kE2BT+49
- kZTmax EQU kE2BT+50
- kZTStep EQU kE2BT+51
- kZOmin EQU kE2BT+52
- kZOmax EQU kE2BT+53
- kZOStep EQU kE2BT+54
- kZu0 EQU kE2BT+55
- kZv0 EQU kE2BT+56
- kZnMin EQU kE2BT+57
- kZnMax EQU kE2BT+58
- kDelLast EQU kE2BT+59
- kSinReg EQU kE2BT+60
- kConstE EQU kE2BT+61
- kPic1 EQU kE2BT+62
- kPic2 EQU kE2BT+63
- kPic3 EQU kE2BT+64
- kDelVar EQU kE2BT+65
- kGetCalc EQU kE2BT+66
- kRealM EQU kE2BT+67
- kPolarM EQU kE2BT+68
- kRectM EQU kE2BT+69
- kuv EQU kE2BT+70 ; U vs V
- kvw EQU kE2BT+71 ; V vs W
- kuw EQU kE2BT+72 ; U vs W
- kFinPMTend EQU kE2BT+73
- kFinPMTbeg EQU kE2BT+74
- ;
- kGraphStyle EQU kE2BT+75
- ;
- kExprOn EQU kE2BT+76
- kExprOff EQU kE2BT+77
- kStatA EQU kE2BT+78
- kStatB EQU kE2BT+79
- kStatC EQU kE2BT+80
- kCorr EQU kE2BT+81
- kStatD EQU kE2BT+82
- kStatE EQU kE2BT+83
- kRegEq EQU kE2BT+84
- kMinX EQU kE2BT+85
- kQ1 EQU kE2BT+86
- kMD EQU kE2BT+87
- kQ3 EQU kE2BT+88
- kMaxX EQU kE2BT+89
- kStatX1 EQU kE2BT+90
- kStatY1 EQU kE2BT+91
- kStatX2 EQU kE2BT+92
- kStatY2 EQU kE2BT+93
- kStatX3 EQU kE2BT+94
- kStatY3 EQU kE2BT+95
- kTblMin EQU kE2BT+96
- kTblStep EQU kE2BT+97
- kSetupLst EQU kE2BT+98
- kClrAllLst EQU kE2BT+99
- kLogistic EQU kE2BT+100
- kZTest EQU kE2BT+101
- kTTest EQU kE2BT+102
- k2SampZTest EQU kE2BT+103
- k2SampTTest EQU kE2BT+104
- k1PropZTest EQU kE2BT+105
- k2PropZTest EQU kE2BT+106
- kChiTest EQU kE2BT+107
- k2SampFTest EQU kE2BT+108
- kZIntVal EQU kE2BT+109
- kTIntVal EQU kE2BT+110
- k2SampTInt EQU kE2BT+111
- k2SampZInt EQU kE2BT+112
- k1PropZInt EQU kE2BT+113
- k2PropZInt EQU kE2BT+114
- kDNormal EQU kE2BT+115
- kInvNorm EQU kE2BT+116
- kDT EQU kE2BT+117
- kChi EQU kE2BT+118
- kDF EQU kE2BT+119
- kBinPDF EQU kE2BT+120
- kBinCDF EQU kE2BT+121
- kPoiPDF EQU kE2BT+122
- kPoiCDF EQU kE2BT+123
- kun EQU kE2BT+124
- kvn EQU kE2BT+125
- kwn EQU kE2BT+126
- kRecn EQU kE2BT+127
- kPlotStart EQU kE2BT+128
- kZPlotStart EQU kE2BT+129 ; recursion n
- kXFact EQU kE2BT+130 ; PlotStart
- kYFact EQU kE2BT+131 ; ZPlotStart
- kANOVA EQU kE2BT+132 ; XFact
- kMaxY EQU kE2BT+133 ; YFact
- kWebOn EQU kE2BT+134 ; MinY
- kWebOff EQU kE2BT+135 ; MaxY
- kTblInput EQU kE2BT+136 ; WEB ON
- kGeoPDF EQU kE2BT+137 ; WEB OFF
- kGeoCDF EQU kE2BT+138 ; WEB OFF
- kShadeNorm EQU kE2BT+139
- kShadeT EQU kE2BT+140
- kShadeChi EQU kE2BT+141
- kShadeF EQU kE2BT+142
- kPlotStep EQU kE2BT+143
- kZPlotStep EQU kE2BT+144
- kLinRegtTest EQU kE2BT+145
- KMGT EQU kE2BT+146 ; VERT SPLIT
- kSelectA EQU kE2BT+147
- kZFitA EQU kE2BT+148
- kE2BT_End EQU kZFitA
- ;
- ;
- ;======================================================================
- ; More 2 Byte Keys
- ;======================================================================
- kE2BT2 EQU 0
- kGDB1 EQU kE2BT2
- kGDB2 EQU kE2BT2+1
- kGDB3 EQU kE2BT2+2
- kY1 EQU kE2BT2+3
- kY2 EQU kE2BT2+4
- kY3 EQU kE2BT2+5
- kY4 EQU kE2BT2+6
- kY5 EQU kE2BT2+7
- kY6 EQU kE2BT2+8
- kY7 EQU kE2BT2+9
- kY8 EQU kE2BT2+10
- kY9 EQU kE2BT2+11
- kY0 EQU kE2BT2+12
- kX1T EQU kE2BT2+13
- kY1T EQU kE2BT2+14
- kX2T EQU kE2BT2+15
- kY2T EQU kE2BT2+16
- kX3T EQU kE2BT2+17
- kY3T EQU kE2BT2+18
- kX4T EQU kE2BT2+19
- kY4T EQU kE2BT2+20
- kX5T EQU kE2BT2+21
- kY5T EQU kE2BT2+22
- kX6T EQU kE2BT2+23
- kY6T EQU kE2BT2+24
- kR1 EQU kE2BT2+25
- kR2 EQU kE2BT2+26
- kR3 EQU kE2BT2+27
- kR4 EQU kE2BT2+28
- kR5 EQU kE2BT2+29
- kR6 EQU kE2BT2+30
- kGDB4 EQU kE2BT2+31
- kGDB5 EQU kE2BT2+32
- kGDB6 EQU kE2BT2+33
- kPic4 EQU kE2BT2+34
- kPic5 EQU kE2BT2+35
- kPic6 EQU kE2BT2+36
- kGDB7 EQU kE2BT2+37
- kGDB8 EQU kE2BT2+38
- kGDB9 EQU kE2BT2+39
- kGDB0 EQU kE2BT2+40
- kPic7 EQU kE2BT2+41
- kPic8 EQU kE2BT2+42
- kPic9 EQU kE2BT2+43
- kPic0 EQU kE2BT2+44
- kStatN EQU kE2BT2+45
- kXMean EQU kE2BT2+46
- kConj EQU kE2BT2+47
- kReal EQU kE2BT2+48
- kFAngle EQU kE2BT2+49
- kLCM EQU kE2BT2+50
- kGCD EQU kE2BT2+51
- kRandInt EQU kE2BT2+52
- kRandNorm EQU kE2BT2+53
- kToPolar EQU kE2BT2+54
- kToRect EQU kE2BT2+55
- kYMean EQU kE2BT2+56
- kStdX EQU kE2BT2+57
- kStdX1 EQU kE2BT2+58
- kw0 EQU kE2BT2+59
- kMatF EQU kE2BT2+60
- kMatG EQU kE2BT2+61
- kMatRH EQU kE2BT2+62
- kMatI EQU kE2BT2+63
- kMatJ EQU kE2BT2+64
- kYMean1 EQU kE2BT2+65
- kStdY EQU kE2BT2+66
- kStdY1 EQU kE2BT2+67
- kMatToLst EQU kE2BT2+68
- kLstToMat EQU kE2BT2+69
- kCumSum EQU kE2BT2+70
- kDeltaLst EQU kE2BT2+71
- kStdDev EQU kE2BT2+72
- kVariance EQU kE2BT2+73
- kLength EQU kE2BT2+74
- kEquToStrng EQU kE2BT2+75
- kStrngToEqu EQU kE2BT2+76
- kExpr EQU kE2BT2+77
- kSubStrng EQU kE2BT2+78
- kInStrng EQU kE2BT2+79
- kStr1 EQU kE2BT2+80
- kStr2 EQU kE2BT2+81
- kStr3 EQU kE2BT2+82
- kStr4 EQU kE2BT2+83
- kStr5 EQU kE2BT2+84
- kStr6 EQU kE2BT2+85
- kStr7 EQU kE2BT2+86
- kStr8 EQU kE2BT2+87
- kStr9 EQU kE2BT2+88
- kStr0 EQU kE2BT2+89
- kFinN EQU kE2BT2+90
- kFinI EQU kE2BT2+91
- kFinPV EQU kE2BT2+92
- kFinPMT EQU kE2BT2+93
- kFinFV EQU kE2BT2+94
- kFinPY EQU kE2BT2+95
- kFinCY EQU kE2BT2+96
- kFinFPMT EQU kE2BT2+97
- kFinFI EQU kE2BT2+98
- kFinFPV EQU kE2BT2+99
- kFinFN EQU kE2BT2+100
- kFinFFV EQU kE2BT2+101
- kFinNPV EQU kE2BT2+102
- kFinIRR EQU kE2BT2+103
- kFinBAL EQU kE2BT2+104
- kFinPRN EQU kE2BT2+105
- kFinINT EQU kE2BT2+106
- kSumX EQU kE2BT2+107
- kSumX2 EQU kE2BT2+108
- kFinToNom EQU kE2BT2+109
- kFinToEff EQU kE2BT2+110
- kFinDBD EQU kE2BT2+111
- kStatVP EQU kE2BT2+112
- kStatZ EQU kE2BT2+113
- kStatT EQU kE2BT2+114
- kStatChi EQU kE2BT2+115
- kStatF EQU kE2BT2+116
- kStatDF EQU kE2BT2+117
- kStatPhat EQU kE2BT2+118
- kStatPhat1 EQU kE2BT2+119
- kStatPhat2 EQU kE2BT2+120
- kStatMeanX1 EQU kE2BT2+121
- kStatMeanX2 EQU kE2BT2+122
- kStatStdX1 EQU kE2BT2+123
- kStatStdX2 EQU kE2BT2+124
- kStatStdXP EQU kE2BT2+125
- kStatN1 EQU kE2BT2+126
- kStatN2 EQU kE2BT2+127
- kStatLower EQU kE2BT2+128
- kStatUpper EQU kE2BT2+129
- kuw0 EQU kE2BT2+130
- kImag EQU kE2BT2+131
- kSumY EQU kE2BT2+132
- kXres EQU kE2BT2+133
- kStat_s EQU kE2BT2+134
- kSumY2 EQU kE2BT2+135
- kSumXY EQU kE2BT2+136
- kuXres EQU kE2BT2+137
- kModBox EQU kE2BT2+138
- kNormProb EQU kE2BT2+139
- kNormalPDF EQU kE2BT2+140
- kTPDF EQU kE2BT2+141
- kChiPDF EQU kE2BT2+142
- kFPDF EQU kE2BT2+143
- kMinY EQU kE2BT2+144 ; MinY
- kRandBin EQU kE2BT2+145
- kRef EQU kE2BT2+146
- kRRef EQU kE2BT2+147
- kLRSqr EQU kE2BT2+148
- kBRSqr EQU kE2BT2+149
- kDiagOn EQU kE2BT2+150
- kDiagOff EQU kE2BT2+151
- kun1 EQU kE2BT2+152 ; FOR RCL USE WHEN GOTTEN FROM 82
- kvn1 EQU kE2BT2+153 ; FOR RCL USE WHEN GOTTEN FROM 82
- ;
- k83_00End EQU kvn1 ;end of original keys...
- kArchive EQU k83_00End + 1
- kUnarchive EQU k83_00End + 2
- kAsm EQU k83_00End + 3 ; Asm(
- kAsmPrgm EQU k83_00End + 4 ; AsmPrgm
- kAsmComp EQU k83_00End + 5 ; AsmComp(
- ;
- kcapAAcute EQU k83_00End + 6
- kcapAGrave EQU k83_00End + 7
- kcapACaret EQU k83_00End + 8
- kcapADier EQU k83_00End + 9
- kaAcute EQU k83_00End + 10
- kaGrave EQU k83_00End + 11
- kaCaret EQU k83_00End + 12
- kaDier EQU k83_00End + 13
- kcapEAcute EQU k83_00End + 14
- kcapEGrave EQU k83_00End + 15
- kcapECaret EQU k83_00End + 16
- kcapEDier EQU k83_00End + 17
- keAcute EQU k83_00End + 18
- keGrave EQU k83_00End + 19
- keCaret EQU k83_00End + 20
- keDier EQU k83_00End + 21
- kcapIAcute EQU k83_00End + 22
- kcapIGrave EQU k83_00End + 23
- kcapICaret EQU k83_00End + 24
- kcapIDier EQU k83_00End + 25
- kiAcute EQU k83_00End + 26
- kiGrave EQU k83_00End + 27
- kiCaret EQU k83_00End + 28
- kiDier EQU k83_00End + 29
- kcapOAcute EQU k83_00End + 30
- kcapOGrave EQU k83_00End + 31
- kcapOCaret EQU k83_00End + 32
- kcapODier EQU k83_00End + 33
- koAcute EQU k83_00End + 34
- koGrave EQU k83_00End + 35
- koCaret EQU k83_00End + 36
- koDier EQU k83_00End + 37
- kcapUAcute EQU k83_00End + 38
- kcapUGrave EQU k83_00End + 39
- kcapUCaret EQU k83_00End + 40
- kcapUDier EQU k83_00End + 41
- kuAcute EQU k83_00End + 42
- kuGrave EQU k83_00End + 43
- kuCaret EQU k83_00End + 44
- kuDier EQU k83_00End + 45
- kcapCCed EQU k83_00End + 46
- kcCed EQU k83_00End + 47
- kcapNTilde EQU k83_00End + 48
- knTilde EQU k83_00End + 49
- kaccent EQU k83_00End + 50
- kgrave EQU k83_00End + 51
- kdieresis EQU k83_00End + 52
- kquesDown EQU k83_00End + 53
- kexclamDown EQU k83_00End + 54
- kalpha EQU k83_00End + 55
- kbeta EQU k83_00End + 56
- kgamma EQU k83_00End + 57
- kcapDelta EQU k83_00End + 58
- kdelta EQU k83_00End + 59
- kepsilon EQU k83_00End + 60
- klambda EQU k83_00End + 61
- kmu EQU k83_00End + 62
- kpi2 EQU k83_00End + 63
- krho EQU k83_00End + 64
- kcapSigma EQU k83_00End + 65
- ksigma EQU k83_00End + 66
- ktau EQU k83_00End + 67
- kphi EQU k83_00End + 68
- kcapOmega EQU k83_00End + 69
- kphat EQU k83_00End + 70
- kchi2 EQU k83_00End + 71
- kstatF2 EQU k83_00End + 72
- kLa EQU k83_00End + 73
- kLb EQU k83_00End + 74
- kLc EQU k83_00End + 75
- kLd EQU k83_00End + 76
- kLe EQU k83_00End + 77
- kLf EQU k83_00End + 78
- kLg EQU k83_00End + 79
- kLh EQU k83_00End + 80
- kLi EQU k83_00End + 81
- kLj EQU k83_00End + 82
- kLk EQU k83_00End + 83
- kLl EQU k83_00End + 84
- kLm EQU k83_00End + 85
- kLsmalln EQU k83_00End + 86
- kLo EQU k83_00End + 87
- kLp EQU k83_00End + 88
- kLq EQU k83_00End + 89
- kLsmallr EQU k83_00End + 90
- kLs EQU k83_00End + 91
- kLt EQU k83_00End + 92
- kLu EQU k83_00End + 93
- kLv EQU k83_00End + 94
- kLw EQU k83_00End + 95
- kLx EQU k83_00End + 96
- kLy EQU k83_00End + 97
- kLz EQU k83_00End + 98
- kGarbageC EQU k83_00End + 99 ; GarbageCollect
- ;
- kE2BT2_End EQU kGarbageC
- ; the following keys were added in OS version 1.15
- KE2BT3 EQU 0
- ;
- kReserved equ KE2BT3+01 ;01 - 001d
- kAtSign equ KE2BT3+02 ;02 - 002d
- kPound equ KE2BT3+03 ;03 - 003d
- kDollar equ KE2BT3+04 ;04 - 004d
- kAmpersand equ KE2BT3+05 ;05 - 005d
- kBackQuote equ KE2BT3+06 ;06 - 006d
- kSemicolon equ KE2BT3+07 ;07 - 007d
- kBackSlash equ KE2BT3+08 ;08 - 008d
- kVertSlash equ KE2BT3+09 ;09 - 009d
- kUnderscore equ KE2BT3+10 ;0A - 010d
- kTilde equ KE2BT3+11 ;0B - 011d
- kPercent equ KE2BT3+12 ;0C - 012d
- kLastUsedK3 equ kPercent
- kTab equ KE2BT3+13 ;0D - 013d
- kShftTaB equ KE2BT3+14 ;0E - 014d
- kShftDel equ KE2BT3+15 ;0F - 015d
- kShftBack equ KE2BT3+16 ;10 - 016d
- kShftPgUp equ KE2BT3+17 ;11 - 017d
- kShftPgDn equ KE2BT3+18 ;12 - 018d
- kShftLeft equ KE2BT3+19 ;13 - 019d
- kShftRight equ KE2BT3+20 ;14 - 020d
- kShftUp equ KE2BT3+21 ;15 - 021d
- kShftDn equ KE2BT3+22 ;16 - 022d
- ;
- kDiamond equ KE2BT3+23
- ;
- kDiaAdd equ kDiamond+00 ;17 - 023d
- kDiaSub equ kDiamond+01 ;18 - 024d
- kDiaTilde equ kDiamond+02 ;19 - 025d
- kDiaDiv equ kDiamond+03 ;1A - 026d
- kDiaBkSlash equ kDiamond+04 ;1B - 027d
- kDiaColon equ kDiamond+05 ;1C - 028d
- kDiaQuote equ kDiamond+06 ;1D - 029d
- kDiaLBrack equ kDiamond+07 ;1E - 030d
- kDiaRBrack equ kDiamond+08 ;1F - 031d
- kDiaBkSpace equ kDiamond+09 ;20 - 032d
- kDiaEnter equ kDiamond+10 ;21 - 033d
- kDiaComma equ kDiamond+11 ;22 - 034d
- kDiaDel equ kDiamond+12 ;23 - 035d
- kDiaDecPnt equ kDiamond+13 ;24 - 036d
- kDia0 equ kDiamond+14 ;25 - 037d
- kDia1 equ kDiamond+15 ;26 - 038d
- kDia2 equ kDiamond+16 ;27 - 039d
- kDia3 equ kDiamond+17 ;28 - 040d
- kDia4 equ kDiamond+18 ;29 - 041d
- kDia5 equ kDiamond+19 ;2A - 042d
- kDia6 equ kDiamond+20 ;2B - 043d
- kDia7 equ kDiamond+21 ;2C - 044d
- kDia8 equ kDiamond+22 ;2D - 045d
- kDia9 equ kDiamond+23 ;2E - 046d
- kDiaTab equ kDiamond+24 ;2F - 047d
- kDiaSpace equ kDiamond+25 ;30 - 048d
- kDiaA equ kDiamond+26 ;31 - 049d
- kDiaB equ kDiamond+27 ;32 - 050d
- kDiaC equ kDiamond+28 ;33 - 051d
- kDiaD equ kDiamond+29 ;34 - 052d
- kDiaE equ kDiamond+30 ;35 - 053d
- kDiaF equ kDiamond+31 ;36 - 054d
- kDiaG equ kDiamond+32 ;37 - 055d
- kDiaH equ kDiamond+33 ;38 - 056d
- kDiaI equ kDiamond+34 ;39 - 057d
- kDiaJ equ kDiamond+35 ;3A - 058d
- kDiaK equ kDiamond+36 ;3B - 059d
- kDiaL equ kDiamond+37 ;3C - 060d
- kDiaM equ kDiamond+38 ;3D - 061d
- kDiaN equ kDiamond+39 ;3E - 062d
- kDiaO equ kDiamond+40 ;3F - 063d
- kDiaP equ kDiamond+41 ;40 - 064d
- kDiaQ equ kDiamond+42 ;41 - 065d
- kDiaR equ kDiamond+43 ;42 - 066d
- kDiaS equ kDiamond+44 ;43 - 067d
- kDiaT equ kDiamond+45 ;44 - 068d
- kDiaU equ kDiamond+46 ;45 - 069d
- kDiaV equ kDiamond+47 ;46 - 070d
- kDiaW equ kDiamond+48 ;47 - 071d
- kDiaX equ kDiamond+49 ;48 - 072d
- kDiaY equ kDiamond+50 ;49 - 073d
- kDiaZ equ kDiamond+51 ;4A - 074d
- kDiaPgUp equ kDiamond+52 ;4B - 075d
- kDiaPgDn equ kDiamond+53 ;4C - 076d
- kDiaLeft equ kDiamond+54 ;4D - 077d
- kDiaRight equ kDiamond+55 ;4E - 078d
- kDiaUp equ kDiamond+56 ;4F - 079d
- kDiaDn equ kDiamond+57 ;50 - 080d
- ;
- kdbSquare equ kDiamond+58
- ;
- kSqrAdd equ kdbSquare+00 ;51 - 081d
- kSqrSub equ kdbSquare+01 ;52 - 082d
- kSqrTilde equ kdbSquare+02 ;53 - 083d
- kSqrDiv equ kdbSquare+03 ;54 - 084d
- kSqrBkSlash equ kdbSquare+04 ;55 - 085d
- kSqrColon equ kdbSquare+05 ;56 - 086d
- kSqrQuote equ kdbSquare+06 ;57 - 087d
- kSqrLBrack equ kdbSquare+07 ;58 - 088d
- kSqrRBrack equ kdbSquare+08 ;59 - 089d
- kSqrBkSpace equ kdbSquare+09 ;5A - 090d
- kSqrEnter equ kdbSquare+10 ;5B - 091d
- kSqrComma equ kdbSquare+11 ;5C - 092d
- kSqrDel equ kdbSquare+12 ;5D - 093d
- kSqrDecPnt equ kdbSquare+13 ;5E - 094d
- kSqr0 equ kdbSquare+14 ;5F - 095d
- kSqr1 equ kdbSquare+15 ;60 - 096d
- kSqr2 equ kdbSquare+16 ;61 - 097d
- kSqr3 equ kdbSquare+17 ;62 - 098d
- kSqr4 equ kdbSquare+18 ;63 - 099d
- kSqr5 equ kdbSquare+19 ;64 - 100d
- kSqr6 equ kdbSquare+20 ;65 - 101d
- kSqr7 equ kdbSquare+21 ;66 - 102d
- kSqr8 equ kdbSquare+22 ;67 - 103d
- kSqr9 equ kdbSquare+23 ;68 - 104d
- kSqrTab equ kdbSquare+24 ;69 - 105d
- kSqrSpace equ kdbSquare+25 ;6A - 106d
- kSqrA equ kdbSquare+26 ;6B - 107d
- kSqrB equ kdbSquare+27 ;6C - 108d
- kSqrC equ kdbSquare+28 ;6D - 109d
- kSqrD equ kdbSquare+29 ;6E - 110d
- kSqrE equ kdbSquare+30 ;6F - 111d
- kSqrF equ kdbSquare+31 ;70 - 112d
- kSqrG equ kdbSquare+32 ;71 - 113d
- kSqrH equ kdbSquare+33 ;72 - 114d
- kSqrI equ kdbSquare+34 ;73 - 115d
- kSqrJ equ kdbSquare+35 ;74 - 116d
- kSqrK equ kdbSquare+36 ;75 - 117d
- kSqrL equ kdbSquare+37 ;76 - 118d
- kSqrM equ kdbSquare+38 ;77 - 119d
- kSqrN equ kdbSquare+39 ;78 - 120d
- kSqrO equ kdbSquare+40 ;79 - 121d
- kSqrP equ kdbSquare+41 ;7A - 122d
- kSqrQ equ kdbSquare+42 ;7B - 123d
- kSqrR equ kdbSquare+43 ;7C - 124d
- kSqrS equ kdbSquare+44 ;7D - 125d
- kSquareT equ kdbSquare+45 ;7E - 126d
- kSqrU equ kdbSquare+46 ;7F - 127d
- kSqrV equ kdbSquare+47 ;80 - 128d
- kSqrW equ kdbSquare+48 ;81 - 129d
- kSqrX equ kdbSquare+49 ;82 - 130d
- kSqrY equ kdbSquare+50 ;83 - 131d
- kSqrZ equ kdbSquare+51 ;84 - 132d
- kSqrPgUp equ kdbSquare+52 ;85 - 133d
- kSqrPgDn equ kdbSquare+53 ;86 - 134d
- kSqrLeft equ kdbSquare+54 ;87 - 135d
- kSqrRight equ kdbSquare+55 ;88 - 136d
- kSqrUp equ kdbSquare+56 ;89 - 137d
- kSqrDn equ kdbSquare+57 ;8A - 138d
- ;
- kUnDef equ kdbSquare+58 ;8A - 139d
- kE2BT3_End equ kUnDef
- ;
|